LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION - **STATISTICS**

SECOND SEMESTER - APRIL 2022

16/17/18UST2MC01 - CONTINUOUS DISTRIBUTIONS

Time: 01:00-04:00

PART A

Answer ALL the questions

(10X2=20)

- 1. Write any two properties of a distribution function.
- 2. Establish the additive property of normal distribution.
- 3. Define pdf of a random variable X.
- 4. Find the MGF of rectangular distribution.
- 5. Define order statistics.
- 6. Find the distribution function of exponential distribution with parameter θ .
- 7. Write the density function of Gamma distribution with two parameter \mathbf{a} and λ .
- 8. If $X \sim N(\mu, \sigma^2)$, then write the pdf of $= \frac{X \mu}{\sigma}$.
- 9. Find the characteristic function of Cauchy distribution with parameter λ and μ .
- 10. If f(x) = 6x(x 1); $0 \le x \le 1$, check whether f(x) is a pdf.

PART B

Answer any FIVE questions

(5X8=40)

- 11. Find the rth moment of Beta distribution of second kind and hence find its mean and variance.
- 12. Prove that V(X) = E[V(X|Y)] + V[E(X|Y)].
- 13. Find the mode and median of normal distribution.
- 14. If X_1 and X_2 are independent rectangular variates on [0,1], find the distribution of $\frac{X_1}{X_2}$.
- 15. i) Define bivariate normal distribution.
 - ii) Let X and Y are jointly bivariate normal with V(X) = V(Y), show that the two random variables X + Y and X Y are independent. (4+4)
- 16. Let X has a standard Cauchy distribution, find the pdf of X² and identify its distribution.
- 17. Find the pdf of a single order statistic $X_{(r)}$.
- 18. Define exponential distribution and prove its lack of memory property.

PART C

Answer any TWO questions

(2X20=40)

- 19. State and prove Lindberg Levy central limit theorem.
- 20. i) Find the joint pdf of two order statistics $X_{(r)}$ and $X_{(s)}$.
 - ii) Find the pdf of rth order statistics of exponential distribution. (13+7)
- 21. $f(x,y) = \begin{cases} 2 x y \ ; 0 \le x \le 1, 0 \le y \le 1 \\ 0 \ ; otherwise \end{cases}$
 - i) Find marginal density of X and Y. (6)
 - ii) V(X) and V(Y) (8)
 - iii) Cov(X,Y) (6)
- 22. If $X \sim N(0,1)$ find the pdf of X^2 and hence find the MGF of $\chi^2_{(n)}$.

########